
Chapter 3
Risk-Neutral Agent

When a risk-neutral agent accepts a contract offer .w; p/, his expected utility rate is
composed of the expected value of the compensation rate from the principal and a
deterministic cost rate of the service capacity which can be expressed as w�pP.1/�
�, where P.1/ denotes the steady state probability of the unit being in the failed
state. Similarly denote the steady state probability of the unit being operational by
P.0/ D 1 � P.1/.

Notation: .x/C D x when x � 0 and .x/C D 0 when x < 0.
A risk-neutral agent’s expected utility rate is:

uA.�I w; p/ D .w � pP.1/ � �/C for w > 0; p > 0; � � 0 (3.1)

P.0/ and P.1/ (functions of � and �), represent the proportion of time in the steady
state the Markov process is in state 0 and state 1 respectively (Ross 2006). They
satisfy the balance equations of the Markov process and sum up to 1, thus P.0/ D
�=.� C �/; P.1/ D �=.� C �/:

uA.�I w; p/ D
�

w � p�

� C �
� �

�
C

for w > 0; p > 0; � � 0 (3.2)

Since the principal determines w and p she can always entice the agent to accept the
contract.

For r > 0 (determined exogenously by the market), the principal’s expected profit
rate is composed of the expected revenue rate generated by her unit, the expected
penalty rate collected from the agent and the compensation rate paid to the agent:
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…P.w; pI �/ D rP.0/ � w C pP.1/ D r�

� C �
� w C p�

� C �

for w > 0; p > 0; � � 0 (3.3)

Observation 3.1. We note that under another type of contract, where the principal
compensates the agent only for each unit of uptime (instead of each unit of time), the
agent’s expected utility rate is equivalent to (3.2), and the principal’s expected profit
rate is equivalent to (3.3): Under the new type of contract, denote the compensation
rate by Qw and the penalty rate by Qp, therefore the agent’s expected utility rate
becomes:

uA.�I Qw; Qp/ D . QwP.0/ � QpP.1/ � �/C D
� Qw�

� C �
� Qp�

� C �
� �

�
C

for Qw > 0; Qp > 0; � � 0 (3.4)

and the principal’s expected profit rate becomes:

…P. Qw; QpI �/ D rP.0/ � QwP.0/ C QpP.1/ D r�

� C �
� Qw�

� C �
C Qp�

� C �

for Qw > 0; Qp > 0; � � 0 (3.5)

Replacing Qw by w and Qp by .p � w/ in (3.4) and (3.5) we obtain (3.2) and (3.3)
respectively.

Note that a performance based contract can even take the form such that a
compensation rate is specified for each unit of uptime (instead of each unit of
time) and no penalty rate is charged whatsoever. That is, the principal controls only
one variable (the compensation rate) instead of two (the compensation rate and the
penalty rate). However this form of performance based contract is not discussed in
this work.

Returning to the agent as in (3.2) we define the part inside the brackets by

u.�/ � w � p�

� C �
� � (3.6)

i.e., for � � 0, u.�/ is continuous and differentiable everywhere:

du.�/

d�
D p�

.� C �/2
� 1 and

d2u.�/

d�2
D � 2p�

.� C �/3
< 0

u.0/ D w � p,
du.�/

d�

ˇ̌
ˇ̌
�D0

D p

�
� 1 and lim

�!C1
du.�/

d�
D �1
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3.1 Optimal Strategies for Risk-Neutral Agent

Note that u.�/ in (3.6) increases and …P.w; pI �/ in (3.3) decreases in w, therefore
for any value of penalty rate p, the principal can raise her expected profit rate by
adjusting the rate w low enough while ensuring the agent’s participation by setting
the agent’s expected utility rate equal to his reservation utility rate. Although the
principal cannot contract directly on the agent’s capacity, she presumes the agent
will optimize his expected utility rate. That is, for any compensation rate w and
penalty rate p proposed by the principal, the agent computes the value of � that
maximizes his expected utility rate and decides whether to accept the contract or
not by solving the following optimization problem:

max
��0

u.�/ D max
��0

�
w � p�

� C �
� �

�
(3.7)

with agent’s optimal service capacity denoted by ��.w; p/ D argmax��0 u.�/.
We describe the agent’s optimal response to any possible contract offer .w; p/ 2

R
2C in Proposition 3.3, but we start with a simple technical lemma – one of many.

Lemma 3.2. If p > � > 0, then p > 2
p

p� � � > 0.

Proof. If p > � > 0, then 2
p

p� � � > 2� � � D � > 0 and p � 2
p

p� C � D�p
p � p

�
�2

> 0, where the latter inequality indicates p > 2
p

p� � �. ut
Proposition 3.3. Consider a risk-neutral agent with uA.�I w; p/ given in (3.2).

(a) Given p 2 .0; ��, then the agent accepts the contract only when w � p and does
not commit any service capacity .��.w; p/ D 0/ resulting in expected utility
rate uA.��.w; p/I w; p/ D w � p � 0.

(b) Given p > �, then the agent accepts the contract only when w � 2
p

p��� and
installs service capacity ��.w; p/ D p

p� � � > 0 resulting in expected utility
rate uA.��.w; p/I w; p/ D w � 2

p
p� C � � 0.

Proof. Figure 3.1 illustrates the form of u.�/ when the value of p falls in different
ranges. The structure of the proof for Proposition 3.3 is depicted in Fig. 3.2.

Case p 2 .0; ��: u.�/ is decreasing for � � 0, therefore the optimal service
capacity is set at ��.w; p/ D 0 and u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if

offered.

Case p > �: The service capacity that maximizes u.�/ is positive as seen from

the first order condition du.�/=d�j�D��.w;p/ D 0 ) ��.w; p/ D p
p� � � > 0

and u.��.w; p// D w � 2
p

p� C �. According to Lemma 3.2 we have to resolve
the following subcases:
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Fig. 3.1 Illustration of the forms of u.�/

Risk-Neutral
Agent

p > λ

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p ∈ (0, λ]

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

Fig. 3.2 Structure of the proof for Proposition 3.3

Subcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, therefore the agent rejects

the contract.
Subcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would accept

the contract if offered.
ut

In summary, given exogenous market conditions such that there exists a contract
benefiting both the agent and principal (see Theorem 3.4 later), only one formula is
necessary for the agent to determine his service capacity: ��.w; p/ D p

p��� > 0.
The conditions when the agent accepts the contract are depicted by the shaded

areas in Fig. 3.3. The two shaded areas of different grey scales represent conditions

f.w; p/ W p 2 .0; �� ; w � pg and
n
.w; p/ W p > �; w � 2

p
p� � �

o
under which the

agent accepts the contract but responds differently. The lower bound function of the
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Fig. 3.3 Conditions when a risk-neutral agent accepts the contract

shaded areas (denoted by w0.p/) represents the contract offers that result in agent
zero expected utility rate. w0.p/ is defined as follows:

w0.p/ D
�

p for p 2 .0; ��

2
p

p� � � for p > �

Note that since limp!�� w0.p/ D limp!�C w0.p/ D �, limp!�� dw0.p/=dp D
limp!�C dw0.p/=dp D 1, w0.p/ is continuous and differentiable everywhere for
p 2 RC.

Anticipating (calculating) the agent’s optimal response ��.w; p/ the principal
chooses w and p that maximize her expected profit rate by solving the optimization
problem:

max
w>0;p>0

…P.w; pI ��.w; p// D max
w>0;p>0

�
r��.w; p/

� C ��.w; p/
� w C p�

� C ��.w; p/

�

(3.8)
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Risk-Neutral
Principal

with
Risk-Neutral

Agent

p > λ and w ≥ 2
√

pλ − λ

r > λ
w∗, p∗)

=
(
2
√

rλ − λ, r
)

μ∗(w∗, p∗) =
√

rλ − λ

r ∈ (0, λ] No contract offered.

p ∈ (0, λ] and w ≥ p No contract offered.

Fig. 3.4 Structure of the proof for Theorem 3.4

with the optimal rates .w�; p�/ D argmaxw>0;p>0 …P.w; pI ��.w; p//. We only
consider pairs .w; p/ 2 R

2C such that uA.�I w; p/ � 0.

Define: DRN � f.w; p/ W p 2 .0; �� ; w � pg [
n
.w; p/ W p > �; w � 2

p
p� � �

o
(3.9)

Theorem 3.4. Given a risk-neutral agent as in (3.2) and a principal as in (3.3) and
suppose that .w; p/ 2 DRN.

(a) If r 2 .0; ��, then the principal does not propose a contract.
(b) If r > �, then the principal’s offer and the agent’s capacity are respectively

�
w�; p�	 D

�
2
p

r� � �; r
�

and ��.w�; p�/ D
p

r� � � (3.10)

resulting in principal’s expected profit rate …P.w�; p�I ��.w�; p�// D r �
2
p

r� C �.

Proof. The structure of the proof for Theorem 3.4 is depicted in Fig. 3.4.

Case p 2 .0; �� and w � p: According to Proposition 3.3 part (a), the agent
would accept the contract without installing any service capacity. Since
@…P=@w D �1 < 0, the principal chooses w� D p and …P.w�; pI ��.w�; p// D
�p C p D 0. Left with zero expected profit rate, the principal does not propose a
contract.

Case p > � and w � 2
p

p� � �: According to Proposition 3.3 part (b), the

agent accepts the contract and installs capacity
p

p� � �. Since @…P=@w D
�1 < 0, therefore w� D 2

p
p� � � and the principal’s optimization problem

becomes maxp>� …P.w�; pI ��.w�; p// where:

…P.w�; pI ��.w�; p// D r C � �
p

�

�p
p C rp

p

�
(3.11)
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Define x � p
p; a � p

�. The principal’s expected profit rate, denoted by f .x/,
can be restated as f .x/ D r C a2 � a .x C r=x/ for x > 0 and a > 0. Maximizing
f .x/ with respect to x > 0 is equivalent to maximizing …P.w�; pI ��.w�; p//

with respect to p > 0 in the sense that

argmax
p>0

…P.w�; pI ��.w�; p// D
�

argmax
x>0

f .x/

�2

Denote p? � argmaxp>0 …P.w�; pI ��.w�; p//. Since d2f .x/=dx2 D �2ar=x3 <

0, therefore f .x/ is concave with respect to x > 0 and from the first order
condition df .x/=dxjxDx� D ar= .x�/2 � a D 0 ) x� D p

r. Therefore
p? D .x�/2 D r. However p? D r is not necessarily the optimal solution because
the principal maximizes p for p > �. Thus p� D maxfr; �g.

Subcase r 2 .0; ��: p� D �; the principal does not propose a contract since
her expected profit rate is zero.

Subcase r > �: p� D r; the principal receives …P.w�; p�I ��.w�; p�// D r �
2
p

r�C� D
�p

r � p
�
�2

> 0 and proposes a contract .w�; p�/ D .2
p

r��
�; r/ that induces the agent to install service capacity ��.w�; p�/ D p

r���.

In summary, if r 2 .0; ��, then the principal does not propose a contract

(Theorem 3.4 (a)). If r > �, then the principal offers .w�; p�/ D
�
2
p

r� � �; r
�

and the agent installs capacity ��.w�; p�/ D p
r� � � (Theorem 3.4 (b)), which is

an admissible solution according to Definition 2.3. ut
Note that in an optimal contract configuration the agent compensates fully the
principal for lost revenue during the unit’s fail duration.

3.1.1 Sensitivity Analysis of the Optimal Strategy

The principal-agent rationality assumption are odds with the agent accepting a
contract offer and responding with �� D 0. Therefore the only viable case is when
the agent accepts the contract and installs ��.w; p/ D p

p���. In this case the rate
w is bounded below by 2

p
p��� D pP.1/C��.w; p/, with pP.1/ representing the

expected penalty rate charged by the principal when the optimal capacity is installed.
It implies that the agent should at least be reimbursed for the expected penalty rate
and the cost of the optimal service capacity in exchange for his repair service.

The optimal service capacity itself depends only on p and �. Note that @��=@p Dp
�=4p > 0 and @��=@� D p

p=4� � 1. It indicates that given a � the agent
will increase the � when the p increases. However, given a p the change in ��
with respect to the failure rate is not monotonic. The

p
p� � �, as a function of �,

increases when � 2 .0; p=4/ and decreases when � 2 .p=4; p/. If the principal’s
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unit is reliable (� 2 .0; p=4/), then the agent increases the � when � increases. If
the principal’s unit is less reliable (� 2 .p=4; p/), then the savings from reducing
the � are greater than the increase in p, therefore the agent will reduce �� when the
� increases.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
p� � � is u�

A � uA.��.w; p/I w; p/ D w � 2
p

p� C �, and it depends on w, p
and �. Note that @u�

A=@w D �1 < 0, @u�
A=@p D �p�=p < 0, indicating that the

agent’s optimal expected utility rate decreases with the compensation rate and the
penalty rate. Note that @u�

A=@� D �pp=� C 1, and from Proposition 3.3 p > � )
�pp=� C 1 < 0, therefore the agent’s optimal expected utility rate also decreases
with the failure rate.

According to Theorem 3.4, a principal offers a contract to a risk-neutral agent

only if r > � and her offer is .w�; p�/ D
�
2
p

r� � �; r
�

with expected profit

rate …�
P � …P.w�; p�I ��.w�; p�// D r � 2

p
r� C � D

�p
r � p

�
�2

. The

compensation rate and the expected profit rate depend on r and �, and the penalty
rate equals r. Note that @w�=@r D p

�=r > 0 and @w�=@� D p
r=� � 1 > 0

implying that given the �, the principal will increase w when the revenue rate
increases, and given the revenue rate, the principal will increase w when � increases.

Note that @…�
P=@r D

�p
r � p

�
�

=
p

r > 0 and @…�
P=@� D �

�p
r � p

�
�

=
p

� <

0. These results imply that given �, principal’s expected profit rate will increase
when the revenue rate increases, and given the revenue rate, principal’s expected
profit rate will decrease when her equipment unit becomes less reliable.

3.1.2 The Second-Best Solution

According to Theorem 3.4, ..w�; p�/ D
�
2
p

r� � �; r
�

, ��.w�; p�/ D p
r� � �/

is the second-best solution. When the principal can contract directly on � there is
no moral hazard. Therefore in first-best setting, the agent’s expected utility rate,
denoted by uFB

A .w; �/, is simply uFB
A .w; �/ D .w � �/C for w > 0 and � > 0.

Since the principal determines w and �, her optimization problem is:

max
w>0;�>0

…FB
P .w; �/ D max

w>0;�>0
frP.0/ � wg D max

w>0;�>0

�
r�

� C �
� w

�
(3.12)

Denote wFB and �FB the corresponding solution. Since @…FB
P =@w D �1 < 0,

therefore the principal chooses wFB D � to ensure the agent’s participation and
her optimization problem becomes:

max
�>0

…FB
P .�/ D max

�>0

�
r�

� C �
� �

�
(3.13)
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Since d2…FB
P .�/=d�2 D �2r�=.� C �/3 < 0, the principal’s expected profit rate is

concave with respect to � > 0 and �FB can be derived from the first order condition
d…FB

P .�/=d�
ˇ̌
�D�FB D r�=

�
� C �FB

	2 � 1 D 0 ) �FB D p
r� � �. However

�FB D p
r� � � may not necessarily be the optimal solution because the principal

requires � > 0. Note that �FB D p
�
�p

r � p
�
�

> 0 only if r > �. Therefore the

first-best solution is:

wFB D �FB D
p

r� � � for r > � (3.14)

By comparing the second-best solution (3.10) to the first-best solution (3.14), we
conclude:

1. The principal offers a contract only when r > � indicating that the existence
of a beneficial contract for risk-neutral agent is determined exogenously by the
market (the revenue rate r) and the nature of the equipment (the failure rate �),
which is consistent with Proposition 2 in Harris and Raviv (1978).

2. The proposed w in the second-best solution is higher than that in the first-best
solution (w� D 2

p
r� � � >

p
r� � � D wFB), because the principal has to

compensate for the p when the agent’s � is not observable. Nevertheless, the
second-best contract is efficient (as the first-best contract) because of point 3
below.

3. The optimal capacity in the first-best solution and the second-best solution are the
same (�FB D ��.w�; p�/ D p

r� � �), indicating that the principal can induce a
risk-neutral agent to install the desired capacity without contracting on it directly.
Furthermore, the principal receives the same expected profit rate no matter if the
agent’s action is observable (thus contractible) or not. This is consistent with
Proposition 3 part (i) in Harris and Raviv (1978).

4. Finally when the agent is risk-neutral, the principal is guaranteed getting the
revenue rate r at all times regardless of the state of the equipment unit (because
p� D r). This comes at the cost of the contract (w� D 2

p
r���). In other words,

the principal’s profit rate appears as if it is deterministic. However this is not true
for a risk-averse agent, as seen in Chap. 4.

3.1.3 Our Principal-Agent Game

To clarify the interplay of decisions by the principal and the agent, we cast the
principal-agent problem in an extensive form game depicted in Fig. 3.5 below, where
“P” represents the principal and “A” the agent.

There are four possible strategies the principal can choose from:

O1: Offer a contract with p 2 .0; �� and w 2 .0; p/.
O2: Offer a contract with p 2 .0; �� and w � p.
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0
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w − p
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0
0

R

r − w + (p − r)

√
λ

p
w − 2

√
pλ + λ

μ∗

O3

A

0
0

R

r − w + (p − r)

√
λ

p
w − 2

√
pλ + λ

μ∗

O4

Fig. 3.5 Structure of the principal-agent extensive form game

O3: Offer a contract with p > � and w 2
�
0; 2

p
p� � �

�
.

O4: Offer a contract with p > � and w � 2
p

p� � �.

For any contract offer by the principal, there are two strategies for the agent to
choose from: “R” when rejecting the contract, and �� for accepting the contract and
installing the service capacity that maximizes the agent’s expected profit rate. If the
principal offers O1 or O2 and the agent accepts the contract, then �� D 0. If the
principal offers O3 and O4 and the agent accepts the contract, then �� D p

p� � �.
The principal’s expected profit rate and the agent’s expected utility rate are

presented in the leaves of the tree in Fig. 3.5. The element above and below are
the principal’s and the agent’s values respectively.

The agent would accept the contract only if his maximized expected utility rate
is no less than his reservation utility rate uA D 0, therefore the agent accepts
the contract when the principal offers O2 and O4, and rejects the contract when
the principal offers O1 and O3. The principal always prefers the agent to accept the
contract and install a positive service capacity. Therefore the principal would choose
O4 to all other options. Thus there is only one (subgame perfect) Nash equilibrium:
the principal offers a contract with p > � and w � 2

p
p� � � and the agent accepts

the contract and installs �� D p
p� � � > 0.
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